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Abstract. A three-state model is formulated in terms of raising and lowering operators. As an
application, cyclic chemical reactions with three different species in the solid state are studied.
The evolution equations for the densities and for the correlation functions can be derived starting
from a master equation in a generalized Fock space representation on a lattice. Such a description
guarantees the consideration of the excluded volume effect. In contrast to the classical kinetic
behaviour, the system offers stable and unstable regimes depending on the averaged composition
ratio.

1. Introduction

There is much effort in understanding the dynamical behaviour of classical stochastic
systems under exclusion [1–11]. Physically, it means that the considered system is divided
into small cells denoted by the indexi. Every cell can be occupied only by a restricted
number of particles, which are subjected to special dynamical rules depending on the
situation in mind. Here, we consider the case where the occupation number per cell is
restricted to two. The problem is to formulate the dynamics of the system in such a way
that these restrictions are taken into account. In particular, such a situation can be described
in a seemingly compact form starting from a master equation on a lattice [12, 13, 5].

From a quantum point of view two limiting cases exist: unrestricted occupation numbers
(bosons) and, due to the Pauli principle, a restricted occupation number 0 and 1 which
corresponds to an empty and to a single occupied cell in a lattice gas representation. Such
a situation can be also described by a spin model with two orientations.

An obvious extension is given by a finite(p+ 1)-state model, for instance a three-state
model, i.e.p = 2, with empty, single and double occupied lattice cells, respectively. A
possible application is given by a forest fire model [15–20] with burning and growing trees
as well as empty sites. Further realizations are also defined for three-candidate voter models
[21] or systems consisting of two different species with additional vacancies [23, 22].

The analysis of such finite state models requires additional strict constraints preventing
an occupation number higher thanp. The Fock space representation applied in this paper
enables the formulation of the dynamics in terms of operators whose algebraic properties
automatically contain these restrictions. Here we want to demonstrate that the mentioned
situations of ap-fold occupation can be concisely described in terms of local raising and
lowering operators,ai anda†

i , which are characterized by the double commutator relation

[ai, [a†
j , ak]−]− = 2δij ak. (1)

A typical situation which can be treated using the Fock space method is chemical reactions
in solid and glassy materials. Such systems are characterized by a low mobility manifested
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by sufficient small diffusion coefficients, i.e. the particles are fixed over a time scale much
longer than the effective reaction time. In these reaction-dominated processes a particle
is surrounded by approximately the same environment. Therefore, the system should be
described by the above-mentioned lattice. One cell is occupied at least only by one reactant
(excluded volume effect). Hence, a chemical reaction is possible exclusively whenever the
reactants are at adjacent lattice cells (nearest-neighbour interaction) such as

Ai + Bj −→ Ci +Dj i, j neighbouring cells

(compare also equation (16)). Obviously, the chemical reactions dominate the dynamics
and yield the main contributions to the thermodynamical fluctuations in contrast to the
diffusion controlled case, see [24]. To analyse the influence of such chemical fluctuations it
is usual to start from master equations. The transformation of these equations into the Fock
space representation allows both the consideration of the excluded volume effect via the
algebraic properties of the Fock space operators and the application of well known quantum
mechanical techniques.

After introducing the Fock space representation in terms of raising and lowering
operators, satisfying equation (1) we have applied the method in studying an irreversible
chemical ring reaction. It will be demonstrated that already in a lowest-order decoupling of
the hierarchy of kinetic equations there appear regions of instability which are completely
lacking in a conventional consideration without any fluctuations.

2. Fock space representation

The starting point is the master equation which can be derived on quite general grounds. It
can be written in a symbolic form

∂tP (n, t) = L′P(n, t) (2)

whereP is the probability that a certain configuration characterized by the vectorn at
time t is realized. The evolution operatorL′ has to be specified by the dynamics of the
model. Following [12–14, 5, 9] the probability distributionP(n, t) can be related to a state
vector |F(t)〉 in a Fock space according toP(n, t) = 〈n|F(t)〉 with the basis vectors
|n〉 ≡ |n1 . . . ni . . .〉 = ∏

i |ni〉. As a consequence, the master equation (2) is transformed
to an equivalent equation in a Fock space

∂t |F(t)〉 = L̂|F(t)〉. (3)

The operatorL′ in (2) is mapped onto the operatorL̂ given in a second quantized form.
Up to now the procedure is independent of the operators used. UsuallyL̂ is expressed in
terms of creation and annihilation operators satisfying Bose commutation rules [12–14]. To
avoid double occupancy, as for instance in a forest fire model [20] or a model simulating a
traffic jam [25], the method had been extended to the case of restricted occupation numbers
per lattice site [5, 6, 8, 2, 9] by introducing Pauli operators. These operators commute at
different points and anticommute at the same lattice point.

In this paper we propose an extension to a statistics characterized by the twofold
commutation relation (1). To be more specific, let us denote the local state of degree
p at a lattice cell by|0〉, |1〉, . . . , |p〉 indicating an empty, a single and ap-fold occupied
cell. Later we will identify these states by different species reacting mutually upon a certain
scheme.
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Now we introduce local annihilation and creation operators which satisfy the relations

ai | . . . ni . . .〉 =
√
ni(p − ni + 1)| . . . ni − 1 . . .〉

a
†
i | . . . ni . . .〉 =

√
(p − ni)(ni + 1)| . . . ni + 1 . . .〉.

(4)

It is convenient to expand the raising and lowering operators at lattice celli in terms of
usual local Pauli operatorsbαi (SU(2) bαi operators)

ai =
p∑
α=1

bαi (5)

wherep is the degree of the local state which corresponds to the quantum number of the
total spin in theSU(2) algebra. A simple calculation confirms that the commutation rule
(1) is fulfilled if the operatorsbαi satisfy the following algebra:

[bαi , b
α†
i ]+ = 1

[bαi , b
β†
j ]− = 0 if α 6= β or i 6= j

(6)

where the ordinary Pauli operator has the propertybαi | . . .1αi . . .〉 = | . . .0αi . . .〉. Hence the
whole system consists ofN × p types of independent Pauli operatorsbαi (α = 1, . . . , p;
i = 1, . . . , N , N : number of lattice cells). The anticommutation rule is valid only if the
operators of the same classα act at the same lattice celli.

In a particle picture equation (5) means that a particle is composed of particles which
exhibit the usual properties of Pauli operators. Another interpretation is that a particle offers
p internal degrees of freedom. Here, we consider in detail the casep = 2, which is denoted
as a three-state model.

The relation between the quantum formalism and the probability approach based on
the master equation can be found by expanding the vector|F(t)〉 with respect to the basis
vectors of the Fock space

|F(t)〉 =
∑
ni

P (n, t)|n〉. (7)

As was first shown by Doi [12] the average of an arbitrary physical quantityB(n) is given
by the average of the corresponding operatorB̂(t)

〈B̂(t)〉 =
∑
{ni }

P(n, t)B(n) = 〈s|B̂|F(t)〉 (8)

with 〈s| = ∑
{ni }〈n|. This rule also remains valid as well as in the case of using Pauli

operators [5] and the lowering and raising operators introduced in equation (4), respectively,
but with a different meaning of the state vector|s〉 used in the last equation. Generalizing
the corresponding relation to that case we get forp = 2

|s〉 =
∏
i

(
1 + 1√

2
a

†
i + 1

2
(a

†
i )

2

)
|0〉. (9)

Note that the normalization condition for the state function is manifested in the relation
〈s|F(t)〉 = 1.

The evolution equation for an arbitrary operatorB̂ can be written

∂t 〈B̂〉 = 〈s|[B̂, L̂]|F(t)〉. (10)

To derive the last equation we have used the relation〈s|L̂ = 0, which is a necessary
condition for eachL̂. Note that dynamical equations for classical quantities are determined
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by the commutation rules of the underlying operators and by the form of the evolution
operatorL̂.

Because of the different algebraic properties of the lowering and raising operators, let
us introduce two independent operators (indicators)

Ni = a
†
i ai

2
Mi = a

†
i a

†
i aiai

4
. (11)

Using (5) and the algebra of the operators it follows that

Ni | . . .0i . . .〉 = 0 Ni | . . .1i . . .〉 = | . . .1i . . .〉 Ni | . . .2i . . .〉 = | . . .2i . . .〉
Mi | . . .0i . . .〉 = 0 Mi | . . .1i . . .〉 = 0 Mi | . . .2i . . .〉 = | . . .2i . . .〉.

(12)

Now the sumNi +Mi corresponds to the particle number operator in terms of the lowering
and raising operators. To simplify further analysis, one has to derive a lot of auxiliary
relations like

N2
i = Ni M2

i = Mi aiNi = ai Miai = 0 Mia
†
i = a

†
i Ni. (13)

The following relations are also useful:

〈s|ai =
√

2〈s|Ni 〈s|a†
i =

√
2〈s|(1 −Mi). (14)

The annihilation and creation operators fulfil the relation (1) and, furthermore, we find for
instance

[Ni, a
†
j ] = δij a

†
i (1 −Ni) [Mi, a

†
j ] = δij a

†
i (Ni −Mi). (15)

3. Model and evolution operator

The capability of our approach can be demonstrated for a system which consists of three
different species denoted byA, B and C. These substances react mutually due the the
reaction scheme

A+ B → B + B

B + C → C + C

C + A → A+ A.

(16)

Denoting the densities of the species byρA, ρB andρC , respectively and the reaction rates by
k̃β , β = 1, 2, 3, the mean-field equations for the processes introduced in (16) are immediately
written in the form [26]

∂tρA = k̃3ρAρC − k̃1ρAρB

∂tρB = k̃1ρAρB − k̃2ρBρC

∂tρC = k̃2ρBρC − k̃3ρAρC.

(17)

Such kinds of evolution equations can also be derived within the Fock space method in
terms of three independent Bose operators, which was recently demonstrated in [27]. Note
that the Bose approach is also appropriate to discuss in a convincing way the influence of
fluctuations [24].

The above introduced equations (17) are equations on a mean-field level, as already
stressed. The classical equations (17) do not take into account the fact that each lattice
cell can only be occupied by a single species (excluded volume effect). Note that this
effect remains relevant if the reaction processes dominate the diffusion processes. As a
consequence, a local chemical reaction is only possible whenever the corresponding reactants



Three-state model and chemical reactions 6547

occupy adjacent cells, otherwise the reaction cannot be realized. In our approach these
demands are obviously fulfilled by using a three-state model represented by the lowering
and raising operators. The three states|0〉, |1〉, |2〉 correspond to theA, B andC particles.
Using equations (11), (12) the particle operators at a lattice sitei for the corresponding
species are expressed by

Ai = 1 −Ni

Bi = Ni −Mi

Ci = Mi.

(18)

The evolution operator̂L (3) can be derived using the properties of the lowering and raising
operators. For instance it is simple to confirm the relationa†a†a|1〉 = (2)3/2|2〉, whereas
a†a†a|0〉 = 0 anda†a†a|2〉 = 0. Such a combination describes the reaction between aB

and aC particle. Examining all possibilities we get̂L = ∑
i Li with the local evolution

operatorLi at the celli

Li = k̃i2

23/2
a

†
i a

†
i ai +

k̃i1

23/2
aia

†
i a

†
i + k̃i3

2
aiai + k̃i1 − k̃i2

2
a

†
i ai +

k̃i3 − k̃i2

2
aia

†
i + (k̃i2 − k̃i1 − k̃i3).

(19)

As mentioned above, we have to consider that the reaction is only possible when the
reactants are available at neighbouring lattice sites simultaneously. To this end, the reaction
rates are replaced in accordance with (18) by local operators:

k̃i1 = k1

∑
j (i)

(Nj −Mj)

k̃i2 = k2

∑
j (i)

Mj

k̃i3 = k3

∑
j (i)

(1 −Nj).

(20)

Here,j (i) means summation over all sitesj adjacent to the sitei. In view of equation (18)
the interpretation of the last relation is obvious, for instance the rate for the reaction
A+ B → B + B is only nonzero if aB particle is indeed present in the neighbourhood of
anA particle. Both equations (19), (20) and the commutation rules of the operators used
determine the dynamics of the model.

Although the operator̂L is now given by a rather complicated expression (19), (20),
one can find the evolution equations for the particle densities in a straightforward manner
only by using the algebraic properties of the operators

∂t 〈Ai〉 =
∑
j (i)

[k3〈AjCi〉 − k1〈BjAi〉]

∂t 〈Bi〉 =
∑
j (i)

[k1〈BjAi〉 − k2〈CjBi〉]

∂t 〈Ci〉 =
∑
j (i)

[k2〈CjBi〉 − k3〈AjCi〉].

(21)

The result is a diffusive-like coupling to the neighbouring sites due to higher-order functions.
Our further aim is to study first the stationary case, and after that we discuss the equations

for the higher-order terms appearing in (21).
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Let us define three independent correlation functions

〈AiAj 〉 = ψ(R, t)

〈AiBj 〉 = 8(R, t)

〈BiBj 〉 = χ(R, t).

(22)

Here, R means the distance between the lattice pointsi and j which are not necessary
nearest neighbours:R = |i − j |. If we consider neighbouring sites we denote this by
R = 1.

Note that one can use instead of the defined function other independent combinations.
In the stationary case we get using (21), (22)

ψ(1) = Ā−
[
k

q
+ 1

]
8(1)

χ(1) = B̄ − [k + 1]8(1)

(23)

with the notationk = k1
k2

andq = k3
k2

. Furthermore,Ā stands for the stationary expectation
value of the density for theA particles.

To achieve further progress we need the evolution equations for the higher-order
functions included in (21). After a tedious procedure we get

∂t 〈AkAl〉 = −k1

∑
j

{(2jk +2jl)〈AkAlBj 〉 −2jlδkl〈AkBj 〉}

+k3

∑
j

{(2jk +2jl)〈AkClAj 〉 +2jkδkl〈CkAj 〉}. (24)

Here we have introduced2jk, which is only nonzero ifj and k are nearest neighbour
sites. The corresponding equation for〈BkBl〉 results after a cyclic permutationAl → Bl ,
Bl → Cl , Cl → Al , k3 → k1, k1 → k2. As a third independent quantity we have chosen
the correlation function〈AkBl〉, which satisfies the dynamical equation

∂t 〈AkBl〉 =
∑
j

{k32jk〈CkBlAj 〉 − k22jl〈AkBlCj 〉}

+k1

∑
j

{2jk〈AkAlBj 〉 −2jk〈AkBlBj 〉 −2jkδkl〈AkBj 〉}. (25)

In the simplest approximation we decouple the third-order functions in (24), (25) to lower-
order functions using the identityA2 = A. Let us demonstrate the procedure for the
following term:∑

j

2jk〈CkAlAj 〉 ≡
∑
j

2jk(1 − δjl)〈CkAlAj 〉 +2kl〈CkAl〉.

Now we write

〈CkAlAj 〉 ≡ 〈C2
kAlAj 〉
〈C2

k 〉
〈C2

k 〉 ≈
( 〈CkAl〉〈CkAj 〉

〈Ck〉2

)
〈C2

k 〉 = 〈CkAl〉〈CkAj 〉
〈Ck〉 . (26)

The advantage of this decoupling procedure lies in a partial compensation of the failure
occurring due to the approximation in the numerator and the denominator, respectively.
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Using the approximation scheme proposed in (26) we get from (21), (24) and (25) the
stationary solution for the nearest-neighbour functions (22)

ψ(1) = (z − 2)Ā2 + Ā

z − 1

8(1) = (z − 2)ĀB̄

z − 1

χ(1) = (z − 2)B̄2 + B̄

z − 1

(27)

with the coordination numberz (e.g. z = 2d in a cubic lattice). Simultaneously, the
stationary averaged particle concentrations are obtained:

Ā = 1

1 + k + q
B̄ = qĀ C̄ = kĀ (28)

where the abbreviations were already introduced after equation (23). Furthermore, the
complete stationary solution can be written in the form

ψ(R) = Ā2 + Ā(1 − Ā)δkl + Ā(1 − Ā)

z − 1
2kl

8(R) = ĀB̄(1 − δkl)− ĀB̄

z − 1
2kl

χ(R) = B̄2 + B̄(1 − B̄)δkl + B̄(1 − B̄)

z − 1
2kl.

(29)

Analysing the evolution equations (24) and (25) within the same approximation we find

∂tψ(R > 1, t) = k3
2z[Ā− ψ(R)−8(R)][ Ā− ψ(1)−8(1)]

1 − Ā− B̄
− k1

2zψ(R)8(1)

Ā
. (30)

Furthermore, the equation forψ(1, t) reads

∂tψ(1, t) = 2k3
(z − 2)Ā− B̄ + 1 − (z − 1)(ψ(1)+8(1))][Ā− ψ(1)−8(1)]

1 − Ā− B̄

−2k1
(z − 1)ψ(1)8(1)

Ā
. (31)

The corresponding equations forχ(R) in the case ofR > 1 andR = 1, respectively, are
found using the symmetry argument already applied above, equation (24). For completeness
we present the equations for8(R, t) and8(1, t) explicitly:

∂t8(R > 1, t) = zk3
[Ā− χ(1)− ψ(1)][ B̄ − χ(1)−8(1)]

C̄

−zk2
[B̄ − χ(1)−8(1)]8(R)

B̄
+ zk1

8(1)[ψ(R)+8(R)]

Ā
(32)

and

∂t8(1, t) = −k1[8(1)+ Ā]
8(1)

Ā
− k2(z − 1)[B̄ − χ(1)−8(1)]

8(1)

B̄

+k1(z − 1)
8(1)ψ(1)

Ā
+ k3(z − 1)[B̄ − χ(1)−8(1)]

Ā− χ(1)−8(1)

1 − Ā− B̄
.

(33)

As the result, a closed set of coupled equations like (21), (30) and (32) is obtained for the
densities and for the correlation functions. In the next step let us analyse the dynamical
stability of these coupled equations.
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4. Stability

Firstly we study the mean-field equations (17). The stationary solution is also given by
(28) with k = k̃1/k̃2 and q = k̃3/k̃2. A conventional linear stability analysis around the
stationary point yields the eigenvalues of the corresponding 3× 3 matrix to be0,±iρ0

√
k̃1k̃2k̃3

k̃1 + k̃2 + k̃3


(ρ0 is the total density) i.e. the stationary point is neither stable nor unstable. As a
consequence of the two pure imaginary eigenvalues, an arbitrarily small initial deviation
from the stationary solution leads to a periodic evolution in the phase space. The existence
of such oscillations is independent of the classical reaction ratesk̃β . The eigenvalue 0
reflects the conservation of the total densityρ0. Due to the conservation of the total density
there exist only two relevant observables, for instanceρA andρB .

The situation is completely different in the more refined approach used above, where
excluded volume effects are considered explicitly. In the present approximation there appear
five relevant functions:〈A(t)〉, 〈B(t)〉, ψ(1, t), 8(1, t) andχ(1, t). They are determined by
coupled nonlinear equations (21), (31) and (33) and the corresponding equation forχ(1, t).
The evolution of all other quantities, e.g.ψ(R > 1, t), depends on the time behaviour of
these five basic observable.

To perform the stability analysis we make the ansatz

〈A〉 = Ā+ a(t) 〈B〉 = B̄ + b(t)

ψ(1, t) = (z − 1)ψ(1)+ ψ1(t)

8(1, t) = (z − 1)8(1)+81(t)

χ(1, t) = (z − 1)χ(1)+ χ1(t)

(34)

where the five functionsa, b, ψ1, 81 andχ1 are considered as small perturbative terms.
Linearizing the evolution equations for the densities and the correlation functions there
occurs a 5× 5 matrix whose eigenvalues determine the stability

∂tTα = SαβTβ

with Tβ = (a, b, ψ1, χ1, φ1). The matrixSαβ is given by



qz 0 − qz
z−1 0 − z(k+q)

z−1
0 −z 0 z

z−1
z(1+k)
z−1

2q[(z − 1)
+2Ā(z − 1)(z − 2)

+Ā2(z − 2)2]
2k[1 + (z − 2)Ā]

×(z − 2)B̄

2q(z − 2)2Ā2 −2q[1 + 2(z − 1)Ā]
−2k(z − 2)B̄

0
−2q[1 + 2(z − 1)Ā]
−2k[1 + (z − 2)Ā]

−2k(z − 2)2B̄2 −2[1 + (z − 2)B̄]
×[z − 1 − (z − 2)C̄]

0 2(1 + (z − 2)(B̄ − C̄)
2k[1 + 2(z − 2)B̄]
+2[1 + (z − 2)B̄

−k(z − 2)B̄
×[1 + (z − 2)(Ā− B)]

+q(z − 2)B̄
×[z − 1 + (z − 2)Ā]

−(z − 2)Ā
×[z − 1 − (z − 2)C̄]

+q(z − 2)Ā
×[z − 1 + (z − 2)B̄]

(z − 2)(k − q)B̄ (z − 2)(1 − q)Ā

−k(z − 2)(2B̄ − Ā)

−(z − 2)(C̄ − Ā)

−q(z − 2)(Ā+ B̄)



.

The three-dimensional case withz = 6 for a simple cubic lattice is studied in
detail. In particular, the eigenvalues of the 5× 5 matrix obey the secular equation
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det|S − λ| = ∑5
i=0wiλ

i = 0 where the coefficients can be written in the form

w0 = − 147 456
25 α3β

w1 = − 3072
25 α

2[4αβ2 + γ + 12]

w2 = − 384
10 α[10αβ + 1]

w3 = − 16
5 α[10αβ2 + β + γ + 21]

w4 = −12αβ

w5 = −1

(35)

where we have introduced the abbreviationsα = ĀB̄C̄, β = Ā−1 + B̄−1 + C̄−1 and
γ = B̄Ā−1 + ĀC̄−1 + C̄B̄−1.

This gives one real and two pairs of complex conjugated eigenvalues, where the real
parts correspond to the Lyapunov exponents of the system. Furthermore, the sign of the
real part is responsible for stability (negative real part) or instability (positive real part).

Figure 1. Stability regions—S: stable stationary solutions,U : unstable stationary solutions.

In figure 1 we present the stability regions of the underlying model depending on the
reaction rateskβ . Note that the densities of the three species reacting mutually correspond
to the three axes of an equilateral triangle. In the vicinity of a triangle corner the system
is stable, i.e. the real part of all eigenvalues is negative. Due to the deficiency of one
component, the remaining two react and a stable state can be realized.

The situation is completely different in the centre of the triangle, where all three
components are present with approximately the same concentrations. In this region one
gets at least one eigenvalue with a positive real part. There appears an extended region
characterized by a marked unstable behaviour which is strongly different from the case
based upon the mean-field equations (17).

Note that the peculiar representation in the figure reflects a2π
3 symmetry which is related

to the invariance of our basic model against cyclic permutationA → B → C → A.



6552 M Schulz and S Trimper

5. Conclusions

In this paper we have demonstrated that a three-state model can be described within a master
equation mapping the corresponding equation into a Fock space representation. In contrast
to the standard approach we have used operators which satisfy the algebraic properties of
SU(2) lowering and raising operators, see equation (1). In particular, such a statistics seems
appropriate in the case of an irreversible chemical ring reaction where three different species
react mutually after a certain scheme introduced in the third section (16). Since we take into
account the fact that the chemical reaction is only allowed if both reactants are available at
adjacent sites, the reaction rates depend on the occupation numbers of the different species
merged together within the reaction. In other words, we assume that the diffusive motion of
the components is irrelevant, and the dynamics of the system is dominated by the reaction.

Although the underlying evolution operator is complicated due to the restrictions
mentioned we are able to solve the coupled kinetic equations for the densities of the
species and the corresponding density–density correlation functions. Using linear stability
analysis gives a matrix whose eigenvalues determine the stability region. The reaction is
stable whenever two species dominate the reaction. In the case when all three reactants
are available in approximately the same amount, there appears an instability region not
present within a simple mean-field approach based on Bose operators (see the classical
equation (17)).

The advantage of the present method lies in the fact that like in quantum mechanics, an
evolution operator combined with the algebraic properties of the applied operators essentially
determine the dynamics. The method can be extended to other problems such as diffusion
under exclusion in ap-state model [28], the analysis of phase separation in a model with
two different species and vacancies [22] and some other problems like a three-voter model
or a model describing the glass transition [23].
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